

Corral Canyon Resources, LLC

2017 Drill Program Results and Conclusions

by

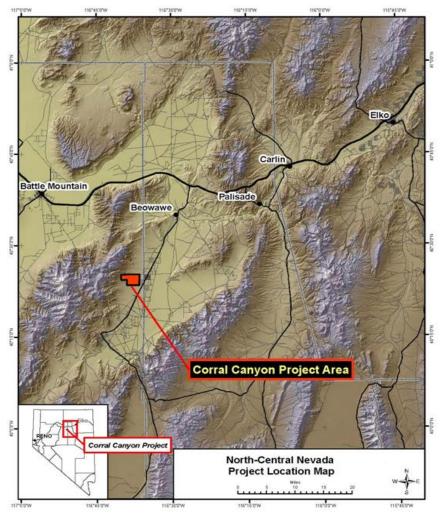
Steven L. McMillin, CPG #11031

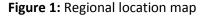
December 1, 2017

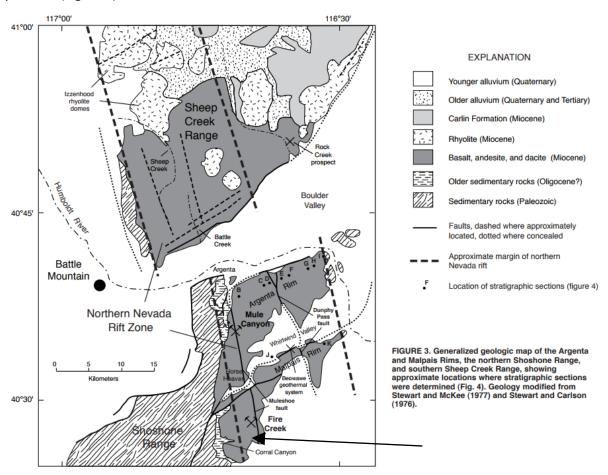
Summary of Results

Two exploration holes (CC-01 and CC-02) and two water wells (CCW-1 and CCW-2) were completed on the Corral Canyon Property, Lander County, Nevada between April 21 and May 25, 2017, and a total footage of 3405 feet were drilled. All holes except CCW-2 penetrated less than 50 feet of alluvial cover. CCW-2 penetrated 270 feet of gravel that represents an alluvial fan. Rock types encountered include mostly basalt and basaltic andesite (confirmed from petrography), intrusive dikes (Milliard, 2017, personal communication), and a thin tuffaceous sediment unit in CC-01. Preliminary correlations to Fire Creek stratigraphy were made by Justin Milliard, a University of Nevada Reno graduate student. Specifically, units of the post-mineral Horse Heaven Sequence and underlying Mule Canyon sequence (which host the Mule Canyon and Fire Creek gold deposits) were identified.

The presence of a hydrothermal system at Corral Canyon is evident from alteration, veins, and geochemistry in CC-01, and CC-02, Alteration, typical of gold deposits in the Northern Nevada Rift (NNR), including propylitic (calcite-chlorite) and argillic (clay-pyrite) is present. Weakly anomalous gold (1-83 ppb) and silver (1-3 ppm) occurs in sporadic down-hole intervals. Visible gold was identified in panconcentrate samples from CC-02.


Quartz veins, a primary ore-deposit component in the (NNR), occur in CC-01, and CC-02 as single and multiple generations with clay, pyrite, and iron oxides likely after pyrite. The vein intervals also occur within fault-breccia zones that likely controlled hydrothermal fluid movement.


Hallmark geochemical indicators in NNR systems such as tellurium and selenium are below detection. Similar to the Fire Creek Mine, arsenic and antimony are not exceptionally elevated. Exploration holes CC-01 and CC-02 encountered increased pyrite and Fire-Creek like alteration with low-level gold near the bottom of the holes


Multiple faults emanating from the Fire Creek Mine property and highlighted by gravity and magnetic geophysical surveys remain to be tested. Resistivity geophysics is a powerful exploration tool as it specifically highlights the Horse Heaven sequence. This permits inferences to be made regarding fault offsets, formation thickness, and minimum depths to targets particularly in the south half of the property where detailed information is sparse. Attractive targets for future drilling include major through-going faults and fault intersections. Additional IP and resistivity profiles can be modeled in 3d for use in more detailed drill targeting.

Introduction

A four-hole drill program at the Corral Canyon Property, Lander County, Nevada was initiated on April 20 and completed by May 25, 2017 (Figure 1). The property is located southeast of Battle Mountain, and northwest of Crescent Valley. The Corral Canyon property is located approximately 70 miles southwest of the town of Elko, Nevada and is easily reached 45 miles west via Interstate Highway I-80, exiting at Beowawe and driving approximately 25 miles south along State Highway 306 west of Crescent Valley (Figure 1). The property is situated approximately 1 to 5 miles west of the town of Crescent Valley in the east-northeastern portion of the Bullion Mining District. Access is excellent to the property with numerous improved gravel and dirt roads traversing most of the low lying pediment lands. Infrastructure is very good with a paved State Highway one mile from the property and fuel, water, electricity and supplies from the small town of Crescent Valley located less than 2 miles from the property.

Geologically, the property is located on the west-central side of the Northern Nevada Rift volcanic province (Figure 2).

Figure 2: Geology of the central portion of the Northern Nevada Rift (John, et al. 2000)

The program was budgeted for two-2000 foot reverse circulation exploration holes with three primary objectives:

- 1) Confirm the presence of Fire Creek style alteration
- 2) Verify the IP anomaly as being pyrite related,
- 3) Establish a stratigraphy that correlates with the Fire Creek mine

Both CC-01 and CC-02 holes ended shallower than expected at 1200 and 1220 feet respectively because of drill equipment issues. The remaining budgeted footage was used to complete two water-wells for value-added infrastructure to the property. CCW-1 and CW-2 were each completed to 500 and 480 feet,

Program Description

Project Grid

The grid used for the program is UTM-North American Datum 1927 (NAD 27) metres which is the same used for the ground magnetic, gravity, and IP-resistivity geophysical surveys. The Fire Creek Mine currently uses NAD 83 State Plane. Diagrams of Fire Creek veins and infrastructure used in this report were converted to the UTM-NAD-27 grid. Footages used in the following sections represent downhole feet from the collar that were converted to metres for modeling in Vulcan software.

Previous Work

A ground magnetic survey and gravity survey were completed by Wright Geophysics in 2011 and 2012, and an IP-Resistivity survey was conducted by Zonge Geophysics in 2015 along two east-west lines. There are no historic prospect pits or mines on the property.

Drill Hole Locations

Drill holes CC-01 and CC-02 were specifically located in the northern portion of the property on or near the northern IP geophysics line. Three pads were constructed, but only two used. CC-01's location was chosen on to intersect north-northwest oriented faults interpreted from air-photos that extend from the Fire Creek Mine area through the IP line as well as its relative proximity to mapped silica alteration at the surface. The hole was oriented with an azimuth of 090 and had a dip of -80. An eastward orientation was chosen to avoid extending the hole off Corral Canyon property.

A second pad was constructed to target the same structural corridor targeted by CC-01. It was planned to be drilled to the west but was determined to be too close to CC-01. The collar location was moved south east 650 feet to the northern IP line. This point is approximately where a north-east fault interpreted from gravity cuts the north-west faults, and is coincident with elevated chargeability. CC-02 was drilled to the west at a -70 dip. Figure 3 illustrates the locations of CC-01 and CC-02 collars with interpreted faults

The location of water well CCW-1 was located in an area thought to be a gravel basin with potential for intersecting water (Miller, 2017, personal communication). The collar location for CCW-2 was chosen for access and the site's location adjacent to dikes from a ground-magnetics interpretation by Wright Geophysics, LLC.

Procedures

Pad Permitting and Construction

All holes are located on private land. As such they are subject to regulations by the State of Nevada which requires a plan of operations for permitting on disturbances greater than 25 acres. In the case of Corral Canyon, a simple map showing locations and approximate disturbances was submitted to the

Nevada Bureau of Mines and Reclamation prior to drilling. Pad construction was completed by use of a Caterpillar D-8 equivalent through a local contractor based in Crescent Valley.

Geologic Contractors

Field supervision of drilling and logging was conducted by Steven McMillin until May 1 and then Brian Bond until completion of this phase in May. Justin Milliard, a University of Nevada graduate student, volunteered his experience with Fire Creek and Mule Canyon stratigraphy in exchange for his examination of the cuttings to help calibrate his mapping.

Drilling Contractor and Equipment

Drill bid requests were sent to reverse circulation drill contractors Envirotech Drilling in Winnemucca and O'Keefe drilling in Butte Montana, and O'Keefe was the low-bidder. The drill used for CC-01 and CC-02 was a Reichdrill T650 truck mounted drill with a trailer mounted auxiliary compressor. The drill crew consisted of a driller, drill helper, and sampler. Drill tools used included standard 20 foot 5.5 inch dualwall rods, cross-over, and 5.5 inch down-hole hammer, and 5.5 inch tricone bits. Tricone bits were used on both CC-01 and CC-02 where groundwater prevented efficient use of the hammer (a best-practice method in Nevada). As the sample was captured through the center pipe (reverse circulation, sample quality was inferred to have not been diminished. Drill-hole CC-01 used a standard carbide button bit to 1000 feet, and then a tri-cone bit was used to completion at 1200 feet. Hole CC-02 used a tricone bit from 850 feet to completion at 1220 feet.

Water holes CCW-1 and CCW-2 were completed by Hackworth Drilling of Elko, Nevada for the specific purpose of establishing water wells to add value to the property. A different drill company was used for the water wells because a licensed water well driller was not available through O'keefe. Nevada state law requires the driller possess a current water-well license to complete wells and legally submit completion records to the state of Nevada. The drill used was an Ingersoll Rand TH100 truck mounted drill. The drill crew consisted of a driller and, 2 drill-helpers. Hackworth drilled the holes conventionally with single wall pipe and a 9.5 inch diameter tricone bit. Cuttings were carried to the surface with drill mud through a cuttings-trough into a sump. Sample quality, in general, is diminished from reverse-circulation drilling because a rotary wet-splitter was not used to control sample or split size. However, the resolution of lithologic contacts such as the gravel-bedrock contact in chips is very good.

Sampling and Logging Procedures

For the exploration holes CC-01 and CC-02, samples were captured through a rotary wet splitter into 20 x 24 inch sample bags. The bags were placed in 5 gallon buckets that were placed in turn in rubber animal feed pans to capture water overflow from the buckets. This over-flow was then poured back into the sample bag upon completion of a given sample interval. Pans and buckets were washed regularly to avoid contamination. Splitter slot-covers were placed over sample-slots to maintain an approximate 5-7 kg (11-15 lb.) sample weight. A representative sample was captured every 5 feet in a wire strainer and

placed in a plastic sample tray for logging. In addition, the remaining material in the strainers was placed on the ground in an orderly grid "rock garden" for supplemental logging information.

Sampling on the Hackworth drill consisted of collection of material from the cuttings-trough every five feet with a weight of 10-15 pounds. Representative material was also collected in a strainer and placed in a chip tray every five feet.

Chip logging was completed with the combined use of a binocular microscope, and hand lens. Data was digitally entered into a Panasonic Toughbook into a shareware bore-hole logging program called Core View.

Analytical Procedures

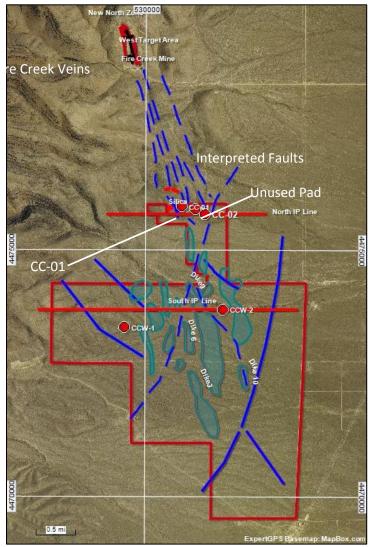
All samples were sent to ALS Minerals in Elko for preparation which included drying, pulverizing, and splitting. All drill holes except CC-01 were pulverized and split to produce a 40g fire-assay charge. CC-001 was prepared for a 30g charge. Samples were then sent to Reno and Vancouver for completion of the fire assays and 42 element ICP analyses. Multi-element analysis was completed on CC-01 and CCW-2. In addition, specific gravity analysis of pulps from rock units in each hole was ordered and results are pending. These data will help calibrate re-interpretations of the current gravity data. Table 1 highlights the analyses used.

	A	LS Mineral Anal		
Hole	Au Fire Assay Analysis	Ag Analysis	Multi-element Analysis	Description
CC-01	AuAA23	Ag-OG46	None	Ag-Aqua-regia digestion with ICP Finish
CC-02	Au-AA24	ME MS61	ME MS61	4 acid digestion
CCW-1	Au-AA24	Ag-OG46	None	Ag-Aqua-regia digestion with ICP Finish
CCW-2	Au-AA24	ME MS61	ME MS61	4 acid digestion

Table 1: ALS Minerals analysis by hole

QA/QC

Blanks and standard material were purchased from Shea Clarke Smith in Reno for inclusion into the sample stream. A blank was added at the beginning, and standard, blank, or duplicate sample was placed approximately every 20 samples.


Petrographic Analysis

Petrographic analysis of select samples was elected because intervals with an abundance of metallic minerals field-identified as arsenopyrite did not have elevated arsenic levels. In addition, several intervals in both holes had multiple generations of quartz veins. Therefore, to help refine the logging

process in future holes, and to help understand the hydrothermal alteration in both holes, samples were sent to Wagner Petrographics in Lyndon, Utah to be made into polished thin sections. The samples were then sent from Wagner Petrographics to David Freedman, a graduate student at University of Nevada-Reno for microscope analysis.

Downhole Surveying

All holes were surveyed upon completion by International Directional Survey (IDS) by crews from Elko. The standard tool used was a down-hole gyroscope that measures direction and dip every 50 feet upon retreat of the tool from the hole.

Figure 3: Location of CC-01, CC-02, and intermediate unused site in the north portion of Section 35 on topography. Dikes are from Wright (2014), and Fire Creek Mine development maps are from Klondex (2015)

Drill Hole Geology

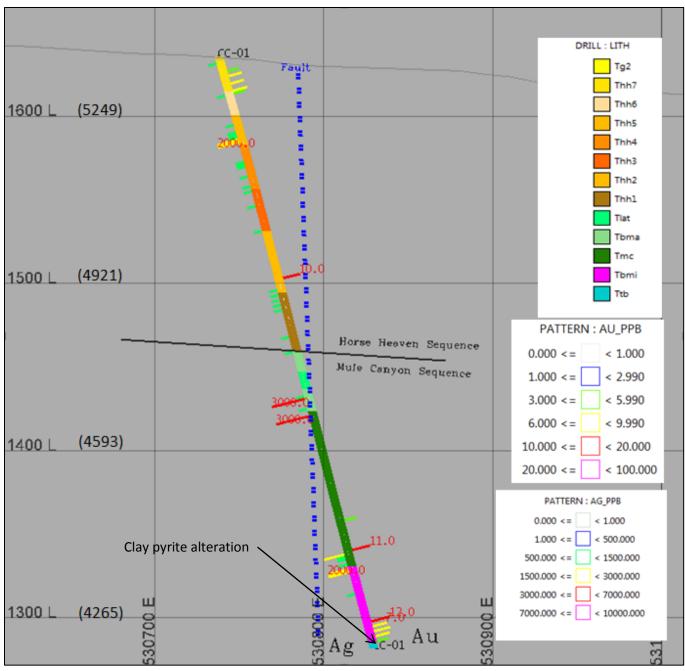
Summary

Basalt, basaltic andesite flows, and basaltic dikes are the primary rock types drilled. Basaltic andesite rock composition was confirmed by petrography. Individual flow tops are marked by elongate vesicles. Dikes were identified by their coarser crystal texture (approaching a gabbro) in CC-01 and CC-02. A thin interval of tuffaceous sediment occurs in CC-01. Justin Milliard, a University of Nevada Reno Ph.D. student, examined the drill cuttings and was able to provide stratigraphic interpretations that correlate with the Fire Creek mine area. Structural interpretations presented here are consistent with his mapping (Milliard, personal communication). Faults were inferred from clay gouge intervals with or without iron oxides, and coarse blocky chips that suggest open spaced fractures. Basalt is an iron-rich rock. Iron oxides can result from the movement of iron in solution by ground water in fracture zones, or can represent the oxidation of sulfides emplaced with alteration. Both types occur at Corral Canyon. Pervasive clay bleaching with iron oxides occurs in CCW-2 along with multi-generation quartz-calcite veins. Veins are typically strongest downhole below 500 feet as is clay and associated iron oxides likely after sulfides. Principal faults with veins occur at 680-700 feet, 1035-1040, and 1210-1220 feet. Table 2 summarizes structure and alteration observed in the Corral Canyon drill holes.

Hole	From	То	Fault	Gouge	Sil	Clay	FeOX	Pyrite	Veins
CC-01	640	670	х	х		х			
	1115	1120	х			х			
	1165	1200				х		х	х
CC-02	540	560	х				х		
	600	680				х	х		
	680	700	х			х	х		х
	780	830	х	х		х			
	1035	1040	х	х		х		х	х
	1210	1220	х	х	х	х		х	х
CCW-1	95	105					х		
	145	165					х		
	305	345					х		х
CCW-2	345	350					Z		х

Table 2: Summary of alteration

Geology, Alteration, and Mineralization by Drill Hole


CC-01

The Horse Heaven Sequence consists of seven individual units that occur from 0-600 feet. Below 600 feet is the Mule Canyon sequence of basalts and tuffs that host the Mule Canyon and Fire Creek deposits. Table 3 shows the interpreted units. Figure 4 shows these units in cross-section

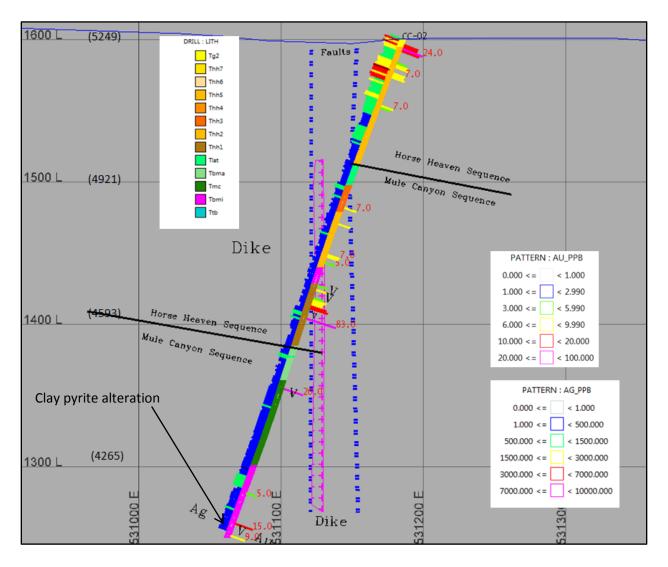
Hole				
Name	From	То	Formation	Units
CC-01	0	600	Horse Heaven	Basalt units 1 to 7
CC-01	600	640	Mule Canyon	Massive basalt-Tbm
				Lithic Ash Tuff-marker
CC-01	640	675	Mule Canyon	unit Tlat
CC-01	675	720	Mule Canyon	Massive Basalt-Tbm
				Basalt micro-crystalline-
CC-01	720	1035	Mule Canyon	Tmc
CC-01	1035	1190	Mule Canyon	Basalt Intrusive-Tbi
CC-01	1190	1200	Mule Canyon	Basalt with tuff- Tbt

Table 3: Interpreted Formations CC-01

Ground water was measureable at 560 feet and the base of oxidation is approximately 1130 feet. A fault and a distinct waxy green clay altered tuff (marker unit in the Fire Creek mine) occurs from 640-680 feet. Detectible gold values of ≥ 1 ppb as contiguous intercepts > 5 feet occur at 150-175 (1-2 ppb), 210-225 (1 ppb), 685-695 feet (1-3 ppb), 1005-1020 (1-2 ppb), and 1035-1045(2 ppb). Silver in CC-01 was fire assayed and had a detection level of 1 ppb. Most of the 500-1500 ppb silver intercepts are in the Horse Heaven Sequence. However, most of the silver intercepts >3000 ppb are in the Mule Canyon sequence along the faulted Tlat-Tmc contact and at the base of Tmc at an intrusive dike contact. Multi-element geochemistry analysis was not done, but it should be, particularly through the Mule Canyon sequence. Quartz veins, and possibly naumannite occur in a fault from 660-675 feet. Argillic alteration with pyrite similar to Fire Creek starts at 1165 feet and contains increasing quartz veins. Mineralization along the Vonnie vein at Fire Creek occurs along a dike contact. The base elevation of CC-01 is still above the broad IP anomaly below, and the geologic and geochemical nature of the anomaly remains to be tested.

Figure 4: Cross-section of geology in CC-01 facing north- Colored tick marks are grade histograms of gold (on the right) and silver (on the left) in ppb; grid is in metres and elevations are in metres and feet

CC-02


A similar stratigraphy to CC-01 occurs in CC-02 but the marker tuff unit Tlat and overlying Horse Heaven units are repeated by a high-angle fault. Table 4 summarizes the lithologic units. Figure 5 shows the hole in cross-section. Several zones with quartz-calcite veins and vein-stockwork occur from 680-700 feet, 780-830 feet, 1035-1040 feet, and 1210–1220 feet. A total of four stages of veins were documented. Very strong pervasive clay alteration from 1210-1220 is like the argillic alteration in the Fire Creek Mine.

Hole				
Name	From	То	Formation	Units
CC-02	0	20	Alluvium	Young gravelsTg2
CC-02	20	310	Horse Heaven	Basalt Unit 2-
CC-02	310	360	Mule Canyon	Lithic Tuff-marker unit Tlat
CC-02	360	425	Horse Heaven	Basalt Unit 3
CC-02	425	560	Horse Heaven	Basalt Unit 2-
CC-02	560	600	Mule Canyon	Basalt Intrusive
CC-02	600	750	Horse Heaven	Basalt Unit 2-
CC-02	750	775	Mule Canyon	Massive basalt
CC-02	775	780	Mule Canyon	Lithic Tuff-marker unit-Tlat
CC-02	780	835	Mule Canyon	Massive basalt-Tbma
CC-02	835	1040	Mule Canyon	Basalt micro-crystalline
CC-02	1040	1220	Mule Canyon	Basalt Intrusive

 Table 4: Stratigraphy of CC-02

Traces of visible gold were present at 1045-1050 feet and 1095-1100 feet. The highest gold assay, 83 ppb, occurs at 680-685 feet. A gold intercept of 12 ppb gold occurs at 1210-1215 feet. Most of the gold intercepts are in the Horse Heaven Sequence near surface, and at a fault-dike contact. A gold intercept also occurs in a basal dike possibly near a lower but undrilled contact. As with the Fire Creek Mine, elements common to epithermal gold deposits including As, Sb, Se, and Te do not show any appreciable concentrations at Corral Canyon (J. Milliard, 2017, personal communication). Likewise, there are no significant concentrations of base metals (Cu, Pb, Zn), although chalcopyrite was tentatively identified in chips. Figure 6 illustrates bar-graphs of As, Sb, Se. Arsenic increases concentration from 1090-1145 feet within the lower intrusive dike.

Figure 7 is a north facing cross-section showing the stratigraphy and interpreted geology of CC-01 and CC-02. The fault adjacent to CC-02 may be the southern expression of the Mule Shoe Fault at Fire Creek Mine area that bounds mineralization to the east (J. Milliard, 2017, personal communication). Figure 8 is a cross-section of the Fire Creek deposit for comparison.

Figure 5: Cross-section of geology in CC-02 facing north- Colored tick marks are grade histograms of gold (on the right) and silver (on the left) in ppb; V=veins; grid is in metres and elevations are in metres and feet

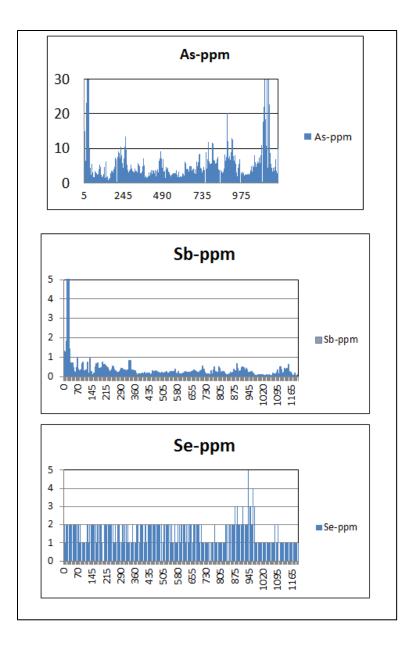


Figure 6: Bar diagrams of select elements from CC-02. X-axis is downhole footage from the collar

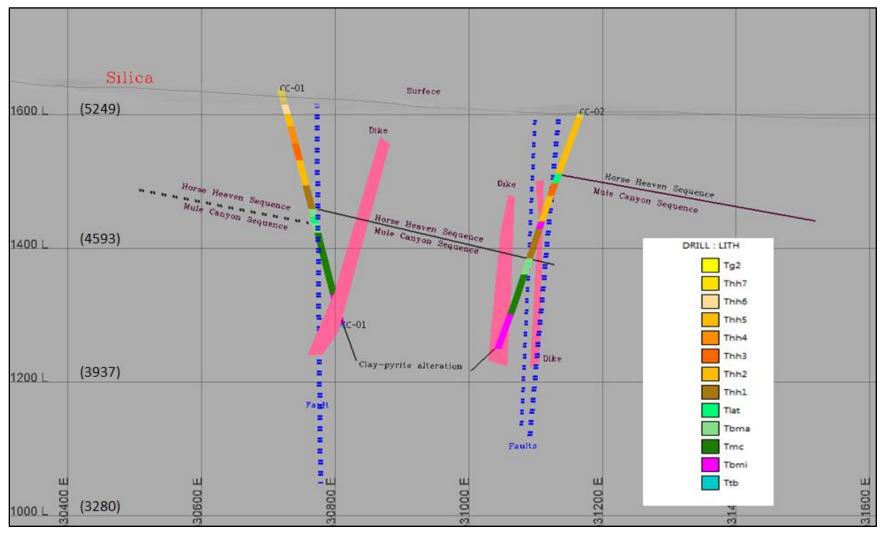
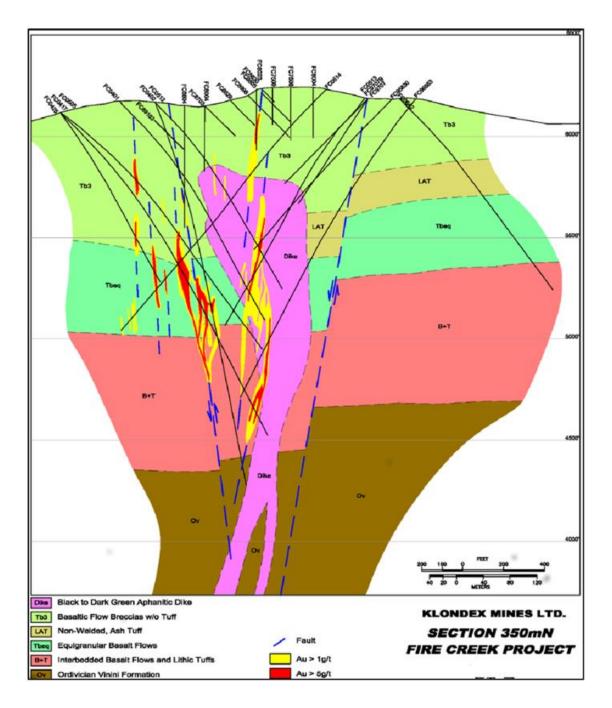



Figure 7: North facing section showing lithologies of CC-01 and CC-02 and interpreted geology; elevation and grid are in metres and feet

Figure 8: Fire Creek cross-section showing stratigraphy, structure, and mineralization (Raven, et al., 2011)

CCW-1

CCW-1 encountered less than 5 feet of alluvium at the surface, vesicular basalt flows in the upper portions of the hole and then massive, hard aphanitic basalt. No groundwater was produced. Table 5 shows the stratigraphy.

Hole From		То	Formation	Units
CCW-1	0	30	Horse Heaven	Basalt Unit 6
CCW-1	30	55	Horse Heaven	Basalt Unit 5
CCW-1	55	90	Horse Heaven	Basalt Unit 4
CCW-1	90	135	Horse Heaven	Basalt Unit 3
CCW-1	135	270	Horse Heaven	Basalt Unit 2-
CCW-1	270	365	Horse Heaven	Basalt Unit 1
CCW-1	365	500	Mule Canyon	Fine grained basalt

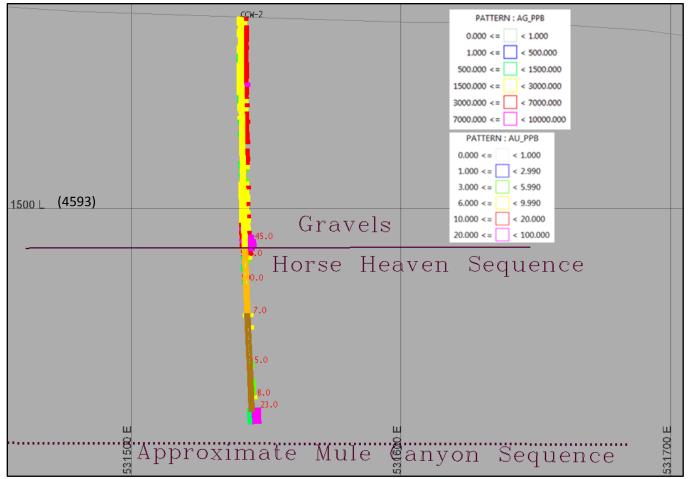
Table 5: Interpreted stratigraphy of CCW-1

Quartz veins are nearly absent with only trace amounts at 435-440 and 490-495 feet. Several intervals in CCW-1 exhibited strong iron staining. Weak gold occurs at multiple intervals and are coincident with strong iron oxide, and specifically jarosite. A 3 mm wire of gold was obtained by panning alluvium. Moderate to strong jarosite occurs from 140-160 feet and contains 10-14 ppb Au. Moderate to strong hematite staining occurs from 280 to 360 feet but is not associated with gold. No multi-element analysis was conducted. Figure 9 is a cross-section of CCW-1.

CCW-2


CCW-2 encountered gravels containing mostly chert and quartzite (likely sourced from the central Shoshone Range), lesser volcanic rock, and alluvial sand to 270 feet. Water was produced at a steady flow of 20 gpm several hours after the hole was completed at 480 feet. Only basal Horse Heaven stratigraphy was drilled, and Mule Canyon lithology was not encountered. Table 6 shows the interpreted stratigraphy. Figure 10 is a cross-section of CCW-2

Hole	ole From		Formation	Units
CCW-2	0	280	Alluvium	Young Gravels
CCW-2	280	360	Horse Heaven	Basalt Unit 2
CCW-2	360	480	Horse Heaven	Basalt Unit 1


 Table 6: Lithology of CCW-2

Oxidation occurs from surface to 280 feet, and the most elevated gold concentrations are from 265-285 feet (25-50 ppb). The last interval, 475-480 feet, contains 23 ppb gold. Figure 11 shows bar-graphs of As, Sb, and Se vs. depth. As with Au and Ag, As and Sb are concentrated near surface and diminish downhole to above the gravel bedrock contact. Concentration spikes at the bedrock interface. This

suggests placer concentration of elements on top of the bedrock. Higher concentrations near surface indicate the most recent sediments (those near the top) were derived from a hydrothermal altered source like Fire Creek (Figure 9). Not enough of the underlying rocks were drilled to determine effects of any hydrothermal alteration. Although weak gold occurs through the Horse Heaven rocks and increases at the bottom of the hole. Figure 10 is a cross-section of CCW-2. Deeper drilling in the vicinity of this hole would determine if mineralization increases with depth

Figure 9: Cross-section of geology in CCW-1 facing north: the colored tick marks are grade histograms of gold in ppb; grid is in metres and elevations are in metres and feet

Figure 10: North facing cross-section of CCW-2; Colored tick marks are grade histograms of gold (on the right) and silver (on the left) in ppb; grid and elevations are in metres and feet

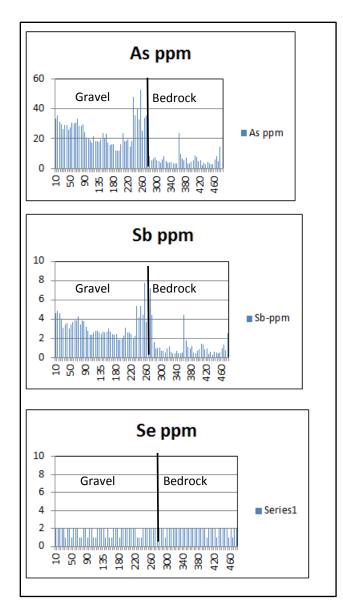


Figure 11: CCW-2 Element bar charts; Horizontal axis equals increasing down-hole footage left to right

Geophysics and Drill-hole Geology

Corral Canyon ground magnetic and gravity surveys highlight the locations of major structures. To some extent, the relative directions and amounts of displacement are discernable in plan-view maps (Wright 2012, 2013). The IP-chargeability survey identified the location of sulfides and similarities to the Fire Creek Mine area in the north project area in the third dimension. However minimal structural information is available. Analysis of chips by Justin Milliard helped place the Corral Canyon drill holes into a stratigraphic framework consisting of post mineral and pre-mineral rocks. Upon completion of a cross-section between CCW-1 and CCW-2 with the south resistivity profile, it became apparent that the base of Horse-Heaven Sequence coincides exactly with the base of a distinct resistivity high on the resistivity profile. Therefore, resistivity appears to map the thickness of the Horse Heaven Sequence and probable faults, and shows relative displacements. Figure 12 is a north-facing cross-section located between CCW-1 and CCW-2. East dipping orientation, variable thicknesses, and probable fault displacements of the highly resistive Horse Heaven rocks are shown. A possible target area is located on the east side near a resistive low (relative chargeability high). Faults with displacements may also be excellent centers of alteration and veins. Figure 13 shows IP chargeability for the same section. Note the lack of structural detail evident in the resistivity section. Resistivity also provides minimum depths to target areas.

Figures 14 and 15 shows the resistivity and chargeability profiles for the north section line and includes CC-01 and CC-02. The resistivity profile shows a much more target-rich environment with larger and more numerous resistivity lows (chargeability highs) and thinner Horse Heaven rocks

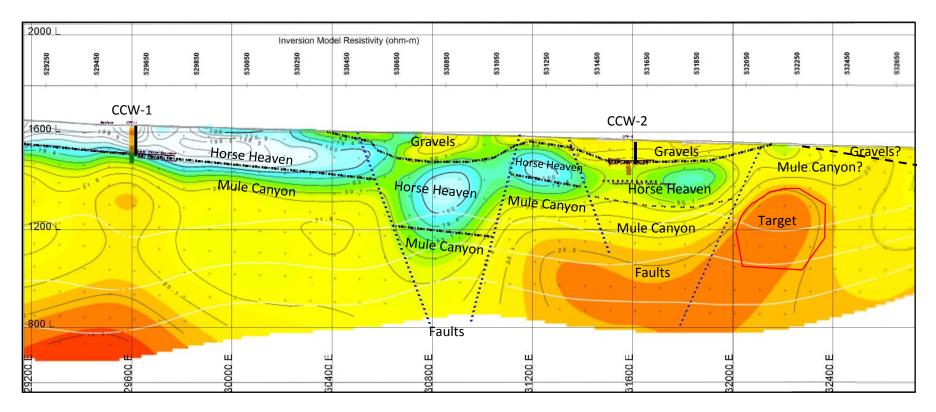
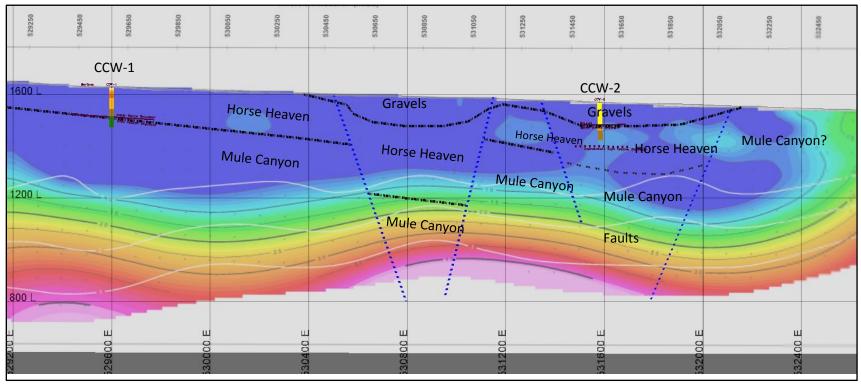
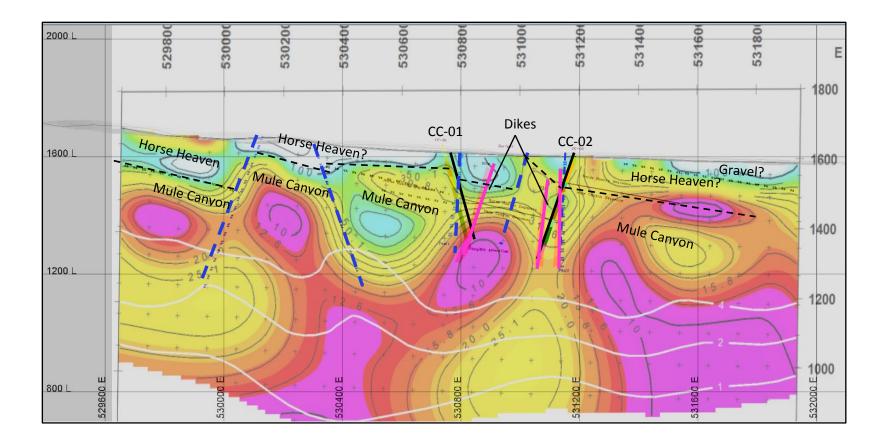




Figure 12: North facing resistivity cross-section showing interpreted lithologic breaks; elevations are in metres

Figure 13: Same section as Figure 13 with IP chargeability profile; elevations are in metres

Figure 14: North IP line resistivity profile showing CC-01 and CC-02 and interpreted Horse Heaven stratigraphy and faults; elevations are in metres

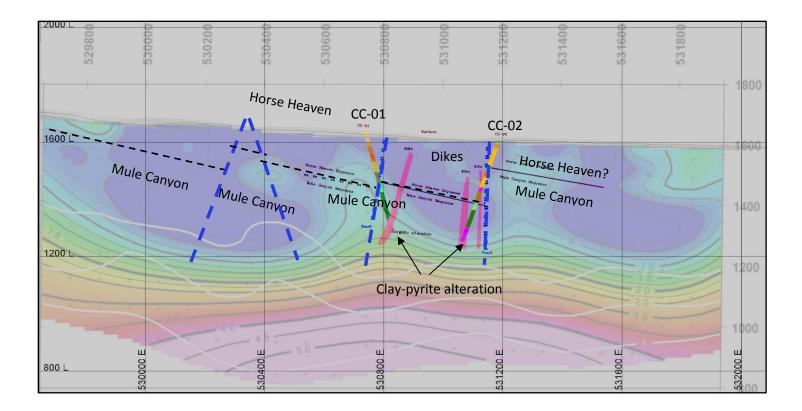
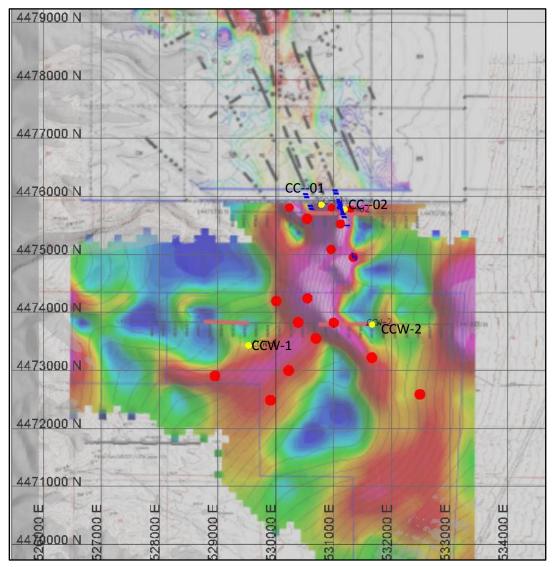


Figure 15: North IP line chargeability profile showing CC-01 and CC-02 with interpreted geology; elevations are in metres

Conclusions

All drill holes penetrated basalt and basaltic andesite sequences of the Northern Nevada Rift. Detailed examination of cuttings allowed for the correlation of units with ongoing surface mapping and previously mapped areas at Fire Creek and Mule Canyon. Two principal groups- the Horse Heaven Sequence, and Mule Canyon Sequence were identified. The Mule Canyon sequence hosts both the Fire Creek and Mule Canyon deposits. The Horse Heaven sequence is largely post mineral above unit 5 (Milliard, 2017, personal communication). All holes except CCW-2 penetrated the Mule Canyon Sequence


Three of the four holes drilled at Corral Canyon encountered detectible gold mineralization up to 83 ppb. Two of the holes (CC-01 and CC-02) encountered quartz veins, and alteration very similar to the Fire Creek Mine. Silver and gold intercepts in CC-01 and CC-02 cluster above and below fault and lithologic contacts (most notably dike contacts). Evidence for fluid boiling is in the banded and multi-generational quartz veins. Other evidence for boiling may also be the opaline silica exposed at the surface in the northern portion of section 36.

The paucity of alluvial cover was perhaps the greatest surprise of the drill program. Initial drill-hole planning anticipated substantial thicknesses of alluvium. CCW-2 was located in a gravel basin on the downthrown side of a major fault and encountered 280 feet of gravel. Given the amounts of throw shown on resistivity, there are likely other such basins.

Gravity highlights through-going faults on the property. Resistivity shows numerous faults additional to those highlighted by gravity that may contain significant alteration and mineralized veins. It also maps thickness and faults in the Horse Heaven Sequence that are not visible on the chargeability sections. Additionally, it highlights resistive lows (chargeability highs) in greater detail than the chargeability sections and minimum depths to targets can be obtained for drill targeting. Major faults and fault intersections would make the best targets for defining additional alteration, veins, and gold. Figure 16 is a target map of the gravity horizontal gradient and IP from the Fire Creek Mine area. Potential drill targets are marked in red. Additional IP-Resistivity may help define structures that can be modeled in 3d and refined as drill results are returned. Future drilling should initially be conducted by reverse circulation in the areas of faults and fault intersections to identify larger zones of alteration and presence of veins. Successful holes should then be followed up by diamond core holes either as offsets in RC pre-collared holes or twins of RC holes. Veins drilled with reverse circulation will likely have diluted grades as typically they may be less than 5 feet in width and core will give much better resolution of assays and location and gold.

In conclusion, the Fire Creek IP signature and geology appears to continue south from the Fire Creek Mine area to the Corral Canyon property. Although veins, alteration, and detectable gold were

encountered, holes in the north were not drilled deep enough to test a greater extent of Mule Canyon Sequence. Further drilling should be located further to the east and west of CC-01 and CC-02 and in between. Drill targets to the south of north IP line is limited by land position, but located along a major northeast structure. Targets to the south of the south IP line would be deeper and would greatly benefit from further IP lines.

Figure 16: Interpreted faults on the gravity horizontal gradient map. Red dots are proposed targets along major faults and near fault intersections; yellow dots are holes drilled

Gravity should be reinterpreted in light of recently acquired specific gravity analysis from each drill hole. Thirty-three drill pulp samples were submitted to ALS Minerals for specific gravity analysis using a pycnometer. The results, shown in table 6 show decreasing specific gravity from the upper to lower Horse Heaven units, a range of densities in the Mule Canyon sequence that may reflect alteration, and surprisingly high values for gravels in CCW-2. These results may help calibrate where the gravel basins are, and refine where fault offsets are.

Recommendations for Further Work

Geology and geophysics results indicate that multiple target opportunities are available to test at the Corral Canyon property. Further work should continue from the north to the south. The following tasks are recommended for further work:

- 1. Complete IP survey for property- the more target options that are available, the better the drill hole placement
- 2. Complete a drill program deeper holes perhaps aligned along an E-W panel that adequately tests the chargeability high
- 3. Model faults and top of Mule Canyon Sequence for further target definition
- 4. Reinterpret the gravity model in light of new specific gravity results of specific gravity (density analysis) from all four holes

SAMPLE	From	То	S.G.	Unit	Formation
CC-01 50-55	50	55	2.96	Thh7	Horse Heaven
CC-01 95-100	95	100	2.86	Thh6	
CC-01 155-160	155	160	2.84	Thh5	
CC-01 200-205	200	205	2.87	Thh4	
CC-01 345-350	345	350	2.83	Thh3	
CC-01 445-450	445	450	2.87	Thh2	
CC-01 555-560	555	560	2.79	Thh1	
CC-01 610-615	610	615	2.65	Tbma	Mule Canyon
CC-01 645-650	645	650	2.57	Tlat	
CC-01 765-770	765	770	2.8	Tmc	
CC-01 995-1000	995	1000	2.31	Tmc	
CC-01 1060-1065	1060	1065	2.18	Tbmi	
CC-01 1105-1110	1105	1110	2.31	Tmc	
CC-01 1160-1165	1160	1165	2.87	Tbmi	
CC-01 1195-1200	1195	1200	2.58	Ttb	
CC-02 50-55	50	55	2.8	Thh2	Horse Heaven
CC-02 220-225	220	225	2.81	Thh1	
CC-02 320-325	320	325	2.58	LAT	
CC-02 400-405	400	405	2.8	Thh3	
CC-02 465-470	465	470	2.73	Thh2	
CC-02 475-480	475	480	2.71	Thh2	
CC-02 620-625	620	625	2.64	Thh1	
CC-02 770-775	770	775	2.74	Tbma	Mule Canyon
CC-02 1095-1100	1095	1100	2.5	Tmc	
CC-02 1210-1215	1210	1215	2.86	Tbmi	
CCW-1 25-30	25	30	2.91	Thh5-6	Horse Heaven
CCW-1 80-85	80	85	2.86	Thh4	
CCW-1 120-125	120	125	2.82	Thh3	
CCW-1 165-170	165	170	2.81	Thh2	
CCW-1 295-300	295	300	2.86	Thh1	
CCW-1 395-400	395	400	2.92	Tmc	Mule Canyon
CCW-2 45-50	45	50	2.68	Tg2	Alluvium
CCW-2 145-150	145	150	2.69	Tg2	
CCW-2 275-280	275	280	2.68	Thh2	Horse Heaven
CCW-2 300-305	300	305	2.75	Thh2	
CCW-2 435-440	435	440	2.79	Thh1	

Table 7: Specific gravity re	esults from	drill pulps
------------------------------	-------------	-------------

References

John, D. A. (2000), New Perspectives on the Geology and Origin of the Northern Nevada Rift; Geology and Ore Deposits 2000:; Geological Society of Nevada 2000 Symposium- The Great Basin and Beyond Proceedings Volume I

Odell, M. A., Symmes, L., Bull, S., and Swanson, K., July 24, 2014, "Preliminary Economic Assessment of the Fire Creek Project, Lander County, Nevada, Amended", NI 43-101 Technical Report, 218 p.

Raven, W., Ullmer, E. & Hawthorn, G., 2011, *Updated technical report and resource estimation on the Fire Creek gold property, Lander Co., Nevada*: NI 43-101 technical report filed on SEDAR Sept. 12, 2011.

Wright, J.L., 2013, Corral Canyon Project, Gravity Survey Phase II, Ground Magnetics Survey Database, Corral Canyon Resources, LLC Company Report

Wright, J. L. 2012, Bean Bag Property Gravity Survey, GIS Database, Corral Canyon Resources Company Report

Appendix 1-Lithologic Units

	General description of Lithologic Units
Tg1	Alluvium, post volcanic gravels that include sand, gravel, volcanic, and Paleozoic basement clasts
Thh7	Aphanitic, laterally restricted andesitic basalt flow, thinner, same texture as 4-6
Thh4-6	Aphanitic, laterally extensive andesitic basalt flows, pahoehoe textures with flow banded interiors and heavily vesiculated tops and bottoms.
Thh3	Aphanitic, massive, andesitic basalt flow, laterally variable thickness able in region FC Main Zone. Often possesses tuffs and opaline outflow and marks upper limit of hydrothermal system at Fire Creek.
Thh2	Similar character as flow unit 1 but more prevalent in exposure. Localized opaline silica outflow horizons occur within.
Thh1	Andesite; base is marked by autobreccia. Localized opaline silica outflow horizons occur within.
Tlat	Tan to buff color, tuff, lithic lapilli tuff to agglomerate breccia that frequently possesses iron oxidation and weakly formed paleosol horizons. Unit often interfingers with upper flows of Tbeq that displays pepperite textures suggesting lavas interacted with water-laden LAT.
Tbma	dark gray, massive equigranular basalt
Tmc	Equivalent to Fire Creek Tbeq- black to dark green, aphanitic and equigranular basalt flow package. Hyaloclastite is common at the unit base.
Tbmi	Intrusives-aphanitic to fine-grained phaneritic and weakly porphyritic; Dikes generally strike north-northeast and many exploited north- northeast-striking (Muleshoe-parallel, see below) faults. Contacts between dikes and wall rocks range from knife-edge sharp to brecciated zones up to several feet thick.

Appendix 2: CC-01 Drill Log

												Corral	Canyon Project Corral Canyon Resources, LLC
	Hole lo	1:CC	-01				1	Easting:	530738	8.075			Azimuth:90 Drilling Company: O'keefe
	Depth	n:120)5				N	orthing:	44758	72.362			Dip: -75 Drill Type: RC
D	ate Starteo							evation:					Geologist: SM, JM
								evalion.	0000.0	107 103			
Date (Completed	: 4/2	8/17										
Depth :		Rock	(Туре				FeOx-	Sulfide		Ass	says		Description
Del	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb	Description
			/				15	1.	0	5	0	0	
			× × × ×						5	10	0	0	
			×.×.,						10	15	0	1000	
			×.×.						15	20	0	0	
	Horse H.	Thh	vBas	Vesic					20	25	0	0	Weakly oxidized andesitic basalt with minor vesicles
			And~						25	30	0	0	105
			· · · ·					1 1 1	30	35	5	0	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					1 1 1	35	40	0	0	
			/ ~ ~				i		40	45	6	0	
-50			·					; ;	45	50	0	0	
(8)(8)			∕ ∨ ∨ ∨Bat						50	55	0	0	
	Horse H.	Thh	∕ Bas And ∕	Aph					55	60	6	0	aphanitic andesitic basalt with no vesicles (interior of flow)
			· · · · ·					1 1 1	60 65	65	0	0	
			· · · · ·					1 1 1	65 70	70 75	7	0	
-01			V V					1 1 1	70	80	5	1000	
	Horse H.	Thhe	Bas And	Aph					80	85	0	0	Red: earthy hematite oxidized basalt with minor zeolite fill of vesicles (near flow contact)
			~ ~						85	90	0	0	
			, ₿aş ĭ			5	i i		90	95	0	0	
100	Horse H.	Thhe	And	Vesic					95	100	0	0	Dark grey: aphanitic: no vesicles
-100			/ ~ ~						100	105	0	0	
	******	1222000000	Bas					1 i i	105	110	0	0	
	Horse H.	Thhe	And	Vesic				1 1 1	110	115	0	0	Very large vesicles: filled by Fe-oxides: geothite
			× × × ×					1 1	115	120	0	0	
-			53						120	125	0	0	
	Horse H.	The		Aph					125	130	0	0	Black basalt: very small chips: Few to no vesicles
	11013611.	Thrs	Bas	Арп					130	135	0	0	
								1 1 1	135	140	0	1000	
	Horse H.	Thh	Bas	Aph					140	145	0	0	Zeolites abundant: calcite: weak effervescence: minor Fe-oxides
-150	100000000000000000000000000000000000000		1212	Sec. Process				111	145	150	0	0	
			44						150	155	0	1000	
	Horse H.	Thh	Basi	Aph					155	160	0	1000	Aphanitic basalt: no vesicles (flow interior)
			2121					11	160	165 170	0	1000	
	Horse H.	<b>T</b> 11	55	Vesic					165 170	170	0	2000 2000	Vesicular aphanitic basalt: with vesicles and minor geothite
•1	HUISE H.	Thh	Bas	Vesic					170	175	0	0	vesicular apriantic basait. With vesicles and minor geomite
			221						175	185	0	0	
	Horse H.	Thh4	Bas	Vesic					185	190	0	0	Minor vesicles: minor Fe-oxidation: trace microcrystalline silica and calcite
2	Horse H.	Thh4	Bas	Aph			-1		190	195	0	0	Aphanitic basalt: microcrystalline silica and calcite: moderate effervescence
- 200			2121	8					195 200	200	0	0	
-200	Horse H.	Thh4	Bas	Aph				1 1 1	200 205	205 210	0	0	Aphanitic basalt: Few to no vesicles

												Corra	Canyon Project		Corral Canyon Resources, LLC
	Hole lo	d:CC	-01					Easting:	530738	8.075			Azimuth:90 Drilling Com	any: O'	'keefe
	Depth	n:120	)5				٩	lorthing:	447587	2.362			Dip: -75 Drill Typ	e: R0	С
D	ate Starteo	1:4/1	5/17				E	levation:	5366.6	37139			Geolo	ist: SI	M. JM
	Completed														
	à				1		<b>F-0</b>	-Sulfide		A					
Depth :		Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	To	says Au-ppb	Ag-ppb	Description		
	. officiation	•	Туре	TOALUTO			155	• • •	11011		ru ppo	Ag ppo			
	100 000		44	2.0					205	210	0	0			
	Horse H.	Thh4	Bas	Aph			1	111	210 215	215 220	0	1000 1000	Aphanitic basalt: Few to no vesicles		
	Horse H.	Thh4	Bas	Vesic		1	1	111	215	220	0	1000	Vesicular aphanitic basalt: with vesicles and minor geothite		
21	. 10100 11.	1.11/14	-Das				<b>F</b> i		225	230	0	0	Contraction of the second of t		
			201		1			111	230	235	0	0			
			22				l i		235	240	0	0			
			E EI					111	240	245	0	1000			
-250	Horse H.	Thh4	Bas	Vesic				1 1 1	245	250	0	0	vesicular basalt		
			221						250	255	0	0			
			001					1 1 1	255	260	0	0			
			551				- E		260 265	265 270	0	1000 0			
	Horse H.	Thh:	Bas	Vesic	1			1 : :	265	270	0	1000	Larger vesicles: earthy hematite		
1	11013011.		Jas	v saic	1	1	1	1 : :	275	280	0	0			
		100000000000000000000000000000000000000	11/1						280	285	0	0			
	Horse H.	Thh	Bas	Vesic					285	290	0	0	increasing % of earthy hematite and geothite		
			44						290	295	0	0			
-300			44						295	300	0	0			
000			44					1 1 1	300	305	0	1000			
			5.51					1 3 3	305	310	0	0			
									310	315	0	0			
	Horse H.	Thh		Aph	1				315 320	320 325	0	0	Red to reddish brown basalt: no vesicles: (basalt contact of major flow)		
8	. 10130 11.	1 mins	S Das	, Abu					325	330	0	o	rice to reader prevent paster. no vesicies, (paster contact of indjoi now)		
			12.12						330	335	0	o			
			22						335	340	0	0			
			22						340	345	0	0			
-350			22						345	350	0	0			
550			PiPil		1				350	355	0	1000			
			44		1				355	360	0	0			
	11.000		44						360	365	0	0			
	Horse H.	Thh	Bas	Vesic	1				365 370	370 375	0	0	Red to reddish brown basalt with abundant vesicles (flow top)		
59			44						370	375	0	0			
			551					9 ( )	380	385	0	0			
			551						385	390	0	o o			
			551					111	390	395	0	0			
400	Horse H.	Thh	Bas	Aph					395	400	0	0	No vesicles: weak Fe-oxides: poor recovery of chips with abundant mud		
-400			44					111	400 405	405 410	0	0			
			44						405	410	ŏ	ŏ			

												Corral	I Canyon Project Corral Canyon Resources, LLC
	Hole lo	I:CC	-01					Easting:	530738	3.075			Azimuth:90 Drilling Company: O'keefe
	Depth	1.120	15					lorthing:					Dip: -75 Drill Type: RC
								-					una En la pos
	ate Starteo	1:4/1	5/17				E	levation:	5366.6	37139			Geologist: SM, JM
Date 0	Completed	: 4/2	8/17										
닱		Rock	СТуре				FeOx	-Sulfide		As	says		
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Ру	From	То	Au-ppb	Ag-ppb	Description
			4:4:4				1.5						
-								: : :	410 415	415 420	0	0	
-			550					1 1 1	415	420	0	0	
-0			44					111	425	430	0	0	
-			44					1 1 1	430	435	0	0	
-			44					1 1 1	435	440	0	0	
			44						440	445	0	0	
1	Horse H.	Thha	Bas	Aph				: : :	445	450	0	0	No vesicles: weak Fe-oxides: poor recovery of chips with abundant mud
-450			Bas (-) (-) (-) (-) (-) (-) (-) (-)					1 1 1	450	455	10	0	
F I			22				1 E	111	455	460	0	0	
			2221					1 1 1	460	465	0	0	
			0,0,1				i i	1 1 1	465	470	0	0	
C.,			0,0,0					1 1 1	470	475	0	1000	
_			D.D.I					: : :	475	480	0	0	
L			44				1	1 1 1	480	485	0	1000	
-	Horse H.	Thh	Bas	Aph			j j	111	485	490	0	0	Reddish brown basalt: with hematite and geothite staining: little to no vesicles
-			55				- i	1 1 1	490	495	0	1000	······································
-500									495	500	0	0	
-			G G Bas				1	1 1 1	500	505	0	1000	
-	Horse H.	Thh	Bas	Vesic			1	1 : :	505	510	0	0	Brownish to gray basalt with small vesicles: filled by calcite: strong effervescence
-			55				1	1 1 1	510 515	515 520	0	1000 0	
-			5151					1 : :	515	520	0	0	
-0	Horse H.	Thh	, La La Basi	Vesic			- i	1 1 1	525	530	0	0	Minor vesicles: black-brown basalts
2	. 10130 11.	1.110	C Das	vesic					530	535	o	0	
-			5 5 5					]	535	540	0	o	
2	Horse H.	Thh	Bas	Vesic				1	540	545	o	0	minor calcite
			501				_ {	1 1 1	545	550	0	0	
-550			44	1		1		1 : 1	550	555	0	O	
[			たん					1 1 1	555	560	0	0	
13 -	Horse H.	Thh	Bas	Aph				111	560	565	0	0	minor geothite
			55	ĩ					565	570	0	1000	
			レンレン					1	570	575	0	0	
	Horse H.	Thh	Bas	Aph		V	1	1	575	580	0	0	calcite cemented fragments: strong effervescence
-			44				1	1 : :	580	585	0	0	
-	Horse H.	Thh	S S S S	Aph				1	585	590	0	0	minor calcite
-			55					1 1 1	590	595	0	0	
-600			とに			3			595 600	600 605	0	1000 0	
-	Horse H.	Tbm	Bas	Aph					605	610	0	0	abundant calcite: strong effervescence: moderate geothite
Ē.	Horse H.	Tbm	Bas						610 615	615 620	0	0 0	Fragments of yellow tuffaceous sediments: minor calcite

## Appendix 3: CC-02 Drill Log

												Corral	Canyon Project	Corral Canyon Resources, LLC
	Hole lo	I:CC-	02				E	Easting:	53118	5.709			Azimuth:90 Drilling Compa	ny: O'keefe
	Depth	1.122	0					orthing:					Dip: -70 Drill Type	
								-						
	ate Starteo						Ele	evation:	5250.7	34908			Geologi	t: BB, JM,
Date 0	Completed	: 5/8/	17											
t		Rock	Туре				FeOx-	Sulfide		Ass	says		B	
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb	Description	
							15	5 7	0	5	0	80		
F I	8402 1022		ÓÖ						5	10	o	350		21-00-1 12 12 12 12 12 10 10 10 10 10 10
	Horse H.	Tg2	Gvl					11	10	15	10	160	Pebble and rounded clasts of unconsolidated gravels: predominately chert and	juartzite: but also basaltic volcanics
			юÖ					11	15	20	10	350		
L I			66						20	25	24	230		
			44						25	30	16	150		
-			44					11	30	35	0	100		
-	Horse H.	Thh2	Bas	Aph				11	35	40	0	110	Dark grey basalt	
-								1 1	40 45	45 50	0	60 70		
-50			22					1 1	50	55	o	140		
			44					1 1	55	60	5	250		
			2121					11	60	65	6	200		
			224					11	65	70	8	160		
-			Pill's					11	70	75	0	260		
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					11	75	80	0	340		
-			224					11	80	85	7	330		
-			224					11	85 90	90 95	6 8	340 240		
-			2224					11	90	100	0	460		
-100			224					11	100	105	o	300		
-			2224					11	105	110	0	60		
2	Horse H.	Thh2	Bas	Vesic				11	110	115	0	280	moderately vesicular	
			2224					11	115	120	0	80		
			2021						120	125	0	120		
a -			224						125	130	0	50		
-			2024						130 135	135	0	110		
a –			ىلەرلەرلەرلەرلەرلە رىلەرلەرلەرلەرلە						135	140 145	0	90 190		
-			22						145	145	o	230		
-150			220						150	155	ő	100		
			EL EL				_		155	160	O	70		
			44						160	165	7	80		
			24						165	170	5	60		
-0			44						170	175	0	70		
3	at the second of		44	Manto				11	175	180	0	60		
-	Horse H.	Thh1	Bas	Vesic					180 185	185 190	0	60 50	red to redbrown: vesicular to scoriaceous	
			44						185	190	0	40		
			えよえまましてい Bas						195	200	0	30		
-200			44						200 205	205 210	0	30 30		

													Corra	Canyon Project		Corral Canyon Resources, LLC
	Hole lo	d:CC-	02				3	Eastii	ng: {	531185	5.709			Azimuth:90	Drilling Company:	: O'keefe
	Dept	า:122	0				N	orthir	ng: 4	447573	80.351			Dip: -70	Drill Type:	RC
D	ate Starte	1:4/29	9/17				El	evatio	on: {	5250.7	34908				Geologist:	BB. JM.
	Completed														5	
	8						-				- 1000					
Depth :			Type Rock	Texture	Faults	Veins	FeOx-			-		says		0	Description	
Ő	Formation	Unit	Rock Type	Texture	-		FeOx	Py	y i	From	То	Au-ppb	Ag-ppb		•	
			44					Î	Ï	205	210	0	30			
			44							210	215	0	30			
			44							215 220	220 225	0	40 70			
			44					l i	1	225	230	0	60			
			44					1		230	235	0	60			
			44					1	1	235	240	0	70			
			44							240	245	0	60			
250			44							245	250	0	90			
200			64					1		250	255	0	60			
	Horse H.	Thh1	Basi	Vesic				1		255	260	0	40	red to redbrown: vesicular to scoriaceous		
			44					į.	1	260	265	0	50			
			44					1	- 1	265	270	0	40			
			L'LL					l i	- 1	270	275	0	30			
			55					l i		275 280	280 285	0	30 30			
			22					i i		285	200	0	30			
			Pil's						1	290	295	0	30			
-			55					1		295	300	0	20			
300			55							300	305	0	10			
			9.91						- 1	305	310	0	40			
			0.00					1		310	315	0	40			
			0.00.00							315	320	0	30			
	Mule C.	LAT	Ltuff							320	325	0	40	Red to red brown basalt: with increasing % of yellow alterate	ed tuff up to 25% in 333	3-340 interval
		-	0.00.40						1	325	330	0	20	Ū ,		
			0.00.00					l i	- i	330 335	335 340	0	40 20			
	Mule C.		Ltuff					1	- 8	340	345	0	20	Polylithic fragments (varible basalts): vesicular: calcite fragme	ents: I AT: I AT by (nos	sible fault zone?
	mule o.	LAT	0.2.0 %						- il	345	350	0	20	r orymine magnema (variore basans), vesicaral, calcite magni	ente. Erit. Erit ex (pos	
350	Mule C.	LAT	Ltuff		Fault				1	350	355	0	20	Fault		
			014,014,0		- 0103060000			i.		355	360	O	20			
			44				1		1	360	365	0	40			
			44		1					365	370	0	70			
			44							370	375	0	70			
			44							375	380	0	40			
	Mule C.	Thh3	Basi	Aph						380	385	0	30	aphanitic basalt: small vesicles		
		trouce 5	22	0						385 390	390 395	0	30 50			
			22							395	400	0	20			
400			224							400	405	0	40			
			2,2,4					11	- 11	405	410	07	20			

												Corral	Corral Canyon Resources, LLC
	Hole Ic	I:CC	-02					Easting:	53118	5.709			Azimuth:90 Drilling Company: O'keefe
	Depth	1:12:	20				Ň	lorthing:	44757:	30 351			Dip: -70 Drill Type: RC
<b>D</b> .								-					
	ate Starteo						E	evation:	9290.7	34908			Geologist: BB, JM,
Date C	Completed	: 5/8	/17										
£		Roc	сТуре				FeOx	Sulfide		As	says		
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Ру	From	То	Au-ppb	Ag-ppb	Description
		-	44				- 15		410	415	7	30	
	Mule C.	Thh:	Basi	Aph				3 8 8	415	420	0	40	aphanitic basalt: small vesicles
			5.51					1 1 1	420	425	0	20	
	Mule C.	Thh:	Bas	Vesic				1 1 1	425	430	0	20	Large vesicles: elongate: minor Fe-oxidization (flow contact)
	101510 01	11114	12.12	0.00.000			Li	111	430	435	0	20	
			4.4					1 : :	435 440	440 445	0	40 30	
			55					1 1 1	445	450	0	30	
450			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					111	450	455	7	40	
			55					1 1 1	455	460	0	20	
			55	1				111	460	465	0	10	
			55					1 1 1	465	470	0	30	
81			550					] [ ]	470	475	0	20	
			55					] [ ]	475	480	0	30	
			55						480 485	485 490	0	50 30	
			55					1 1 1	403	495	0	30	
	Mule C.	Thh	Bas	Vesic				1 1 1	495	500	0	20	variably Fe-oxidized basalt
-500	STRUCT ON		55					1 1 1	500	505	0	20	
			55					1	505	510	0	20	
			55					1	510	515	0	10	
			55						515	520	0	30	
8			55	i i				1 1 1	520	525	0	30	
			55	i i				1	525 530	530 535	76	20 20	
			55						535	535	0	10	
			55	i i					540	545	ő	30	
				i i				: : :	545	550	5	20	
-550			55	1				: : :	550	555	0	10	
			44						555	560	0	20	
			€ (+ (+ + (+					111	560	565	0	20	
			€+++ _++						565	570	0	10	
-			F. + . +					111	570	575	0	30	
	Intrusive	Tbm	i _ Intr +	Aph				] [ [	575 580	580 585	0	30 20	Dark black basalt (possible dike?)
			€					] [ ]	585	590	0	20	
			6. ( <b>4</b> . ( <b>4</b> ( <b>4</b> ) ( <b>4</b> )					111	590	595	ō	10	
			F. + +					111	595	600	0	30	
-600			44						600	605	5	20	
	Mule C.	Thh	Basi	Aph					605 610 615	610 615 620	0 7 0	20 20 10	abundant oxidized basalt with minor calcite and Tlat fragments

												Corral	Canyon Project		Corral Canyon Resources, LLC
	Hole I	d:CC	-02				I	Eastin	g: 53118	5.709			Azimuth:90	Drilling Company:	O'keefe
	Dept	h:122	20				N	orthin	g: 44757	30.351			Dip: -70	Drill Type:	RC
П	ate Starte								n: 5250.7					Geologist	
							E	evalio	1. 0200.7	34900				Geologist.	BB, JW,
ate (	Completed	1: 5/8	17												
f		Rock	Туре				FeOx-	Sulfid		As	says			Description	
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb		Description	
			44				1.6	Ē	615	620	0	10			
									620	625	0	20			
			55					i i	625	630	0	20			
			551					i	630	635	5	10			
			5.5						635	640	9	20			
	Mule C.	The	لے لے Basi	Aph				1	640	645	6	20	abundant oxidized basalt with minor calcite and	Tlat fragments	
650	indie 9.	1.001		1.100					645	650	6	20			
550			55	1				ļ.	650	655	12	10			
			55	1					655	660	16	10			
			55					i i	660 665	665 670	0	40			
			55						670	670	0	40 50			
			661				!	i i	675	675	0	50			
			551				1 3	1	680	685	83	30			
			551						685	690	0	70			
			551					1	690	695	0	20			
700	Mule C.	Thh1	Bas	Aph		V		1	695	700	0	30	5-10% quartz calcite: often quartz is subhedral:	host basalt appers to be Thh	
100		1100000	55					1	700	705	0	30	-20 83		
			5.5					i.	705	710	0	30			
			55					÷.	710	715	0	20			
			66					i.	715	720	0	10			
			5.5					1	720	725	0	10			
			44				1 1 3	i	725	730	0	10			
	Mule C.	Thh1	Bas	Vesic				1	730	735 740	0	20 20	minor vesicular basalt		
			44					ł	1 735 740	740	0	20			
			44				{ }	ł	745	750	ŏ	20			
750			11/1							1000000					
			221					ł	755	760	0	30			
	Mule C.	Tbm	Bas	Aph					760	765	0	20	Variable oxidization: with trace fragments of yell	low tuff (lat)	
			0.01					i	765	770	0	40			
			5.51					i.	770	775	0	40			
	Mule C.	Tlat	Ltuff	Aph				i	775	780	0	50	Basalt with large clots of yellow tuff		
	Mule C.	Tbm	Bas	Aph		V		i	780	785	0	50	oxidized basalt with 1-5% calcite		
			33					1	785	790	0	30			
			55						790 795	795 800	0	30 10			
800	Mule C.	-	44	Ank	Fault			1	800	800	0	20	oxidized basalt with minor rubble that is cement	ad by rock flour from 795-900	
	Mule C.	1 bm	Bas	Aph	rauit			i.	805	810	o	40		eu by fock liour from 7 50-600	
			55					i	810	815 820	0	20 30			
			44					i	815	820	0	30			

												Corral	Canyon Project Corral Canyon Resources, LLC
	Hole lo	1:CC	-02				E	Easting:	53118	5.709			Azimuth:90 Drilling Company: O'keefe
	Depth	1:122	20				N	orthina:	447573	30.351			Dip: -70 Drill Type: RC
	ate Started								5250.7				Geologist: BB, JM,
								evalion.	5250.7	04300			Geologist. DD, Sivi,
Date C	Completed	: 5/8	/17										
Depth :		Rock	Туре	1	Faults	Veins	FeOx-	Sulfide		Ass	says		Description
De	Formation	Unit	Rock Type	Texture	rauits	venis	FeOx	Py	From	То	Au-ppb	Ag-ppb	Description
			5151				1.5	<u> </u>	820	825	0	20	
	Mule C.	Tbm	Bas	Aph	Fault				825	830	0	20	oxidized basalt with minor rubble that is cemented by rock flour from 795-800
	Mule C.	Tbm	Bas	Aph					830	835	0	30	.Small fragments of mildly oxidized basalt make up 50% (Thh) and 50% black aphanitic basalt (Tmc)
-			55					1 1	835 840	840 845	0	30 30	
-			55						845	850	0	20	
-850			CH CH CH CH CH CH Bas						850	855	20	30	
			551						855	860	0	40	
-	Mule C.	Tmo	Bas	Aph		V	11	111	860	865	0	40	Dark black basalt: minor chlorite: small zone of calcite+/- quartz 865-875
-							11		865 870	870 875	0	40 40	
-			22						875	880	0	40	
Ē.			22					1 1	880	885	0	40	
-			171				1 1		885	890	0	40	
-			550						890 895	895 900	0	40 40	
-900			550						900 900	900 905	0	50	
-			551						905	910	0	40	
1			551						910	915	0	30	
-			KH KH KH KH KBas					111	915	920	0	40	Black aphanitic basalt with trace chlorite and calcite-quartz that appear to be amygdules. Interval from 960-970 may be fault: as
	Mule C.	Tmo	Bas	Aph					920 925	925 930	0	40 40	calcite-qiz cements breccia
-			44						925	935	0	40	
-			224						935	940	0	40	
			44						940	945	0	40	
-950			44						945	950	0	40	
-									950 955	955 960	0	40 40	
	Mule C.	Tmo	Bas	Aph	Fault				960	965	0	40	Fault
			0,0,1	1					965	970	0	40	
			44						970	975	0	30	
			44						975 980	980	0	30	
-			55						980	985 990	0	40 30	
-			H Bas						990	995	0	40	
-1000	Mule C.	Tmo	Bas	Aph					995	1000	0	40	Black to black green hyaoloclastite and basalt
- 1000			551						1000	1005	0	40	
-			551						1005 1010	1010 1015	0	30 40	
			25						1015	1020	0	40	
Ē.			2221						1020 1025	1025 1030	0	40 30	

												Corral	Canyon Project		Corral Canyon Resources, LLC
	Hole Ic	:CC-	02				E	Easting:	53118	5.709			Azimuth:90	Drilling Company:	O'keefe
	Depth	1.122	0				Ň	orthina.	447573	30 351			Dip: -70	Drill Type:	RC
_	Toological Press							-					ыр76		
	ate Starteo						Ele	evation:	5250.7	34908				Geologist:	BB, JM,
Date C	Completed	: 5/8/	17												
ŧ		Rock	Туре				FeOx-	Sulfide		As	says				
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb		Description	
-+	~		HILIN		-		- 15 - 3		1025	1030	0	30			
	Mule C.	Tmc	Bas	Aph					1020	1035	ő	40	Black to black green hyaoloclastite and basalt		
									1035	1040	0	40			
			440						1040	1045	0	40			
-1050	e		5.5.4						1045	1050	0	40			
1050			0,0,0						1050	1055	0	40			
			6,6,6				1.1		1055	1060	0	30			
			500						1060	1065	0	40			
			550						1065	1070	0	30			
61			૱૱૱૱૱૱૱૱૱૱૱૱ ૱૱૱૱૱૱૱૱૱૱૱૱૱૱						1070	1075	0	60			
		-	550						1075 1080	1080 1085	0	60 60			
			550						1080	1085	0	60			
			550						1090	1095	o	60			
	a		550						1095	1100	ľ	60			
-1100			550				1 1		1100	1105	0	10			
			44						1105	1110	5	30			
			44						1110	1115	0	30			
			44						1115	1120	0	40			
	Mule C.	Tmc		Breccia	Fault				1120	1125	0	40	Fault/Vein Cemented rubble: appears to be ba	anded vein and pyrite	
~			44			V	1.1		1125	1130	0	40			
			44				1 1 1		1130	1135	0	30			
			11						1135	1140	0	30			
			44						1140	1145	0	30			
1150	(		44						1145 1150	1150 1155	0	40 60			
			44						1155	1160	0	40			
			3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2						1160	1165	0	30			
			44						1165	1170	ŏ	30			
			2221						1170	1175	0	40			
8			224						1175	1180	0	30			
			0,0,0						1180	1185	15	40			
			000						1185	1190	0	40			
			5,5,0						1190	1195	0	30			
-1200			550						1195	1200	0	40			
1200	5		44						1200	1205	0	0			
	14.014.011.0214.0014							-	1205	1210	0	0			
	Intrusive	Tbmi	lintr +	Breccia	Fault				1210	1215	9	0	Fault/Vein Dark black basalt with veinlets of qu		
	Intrusive	Tbmi	- Intr +	Breccia	Fault	———		- I.	1215	1220	12	0	Fault/Vein Dark black basalt with quartz: and c	ciay surfaces (Tbmi dike-fault hosted v	/ein)

Appendix 4: CCW-1 Drill Log

												Corral	Canyon Project Corral Canyon Resources, LLC
	Hole lo	:CC	VV-1				E	Easting:	52958	9.7			Azimuth:0 Drilling Company: Hackworth
	Depth	1:500	ň				N	orthing:	44734	20.6			Dip: -90 Drill Type: Rotary
	1040-0 <b>1</b> 4130							-					
	ate Starteo						Ele	evation:	5337.9				Geologist: BB, JM
Date	Completed	: 5/1	8/17										
Ę		Rock	Туре				FeOx-	Sulfide		As	says		Description
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb	Description
			Hitit				- 15	5 1	0	5	0	0	
F I									5	10	o	0	
Ē.			550					11	10	15	0	0	
-			551					11	15	20	0	0	
			550						20	25	0	0	
[	Horse H.	Thh	Bas	Aph			1.1	11	25	30	0	0	Dark gray aphanitic basalt
		-0	550					11	30	35	0	0	
_			550					i i	35	40	0	0	
2			55					i i	40	45	0	0	
-50			44					11	45	50	0	0	
2			111			8	_1 i	11	50	55	0	0	
	Horse H.	Thh4	Bas	Aph			-::		55 60	60	0	0	Aphanitic basalt: red hematitic staining
-			22				1.1	1 1	60 65	65 70	0	0	
			44					i i	70	70	0	0	
-9	Horse H.	Thh4	Bás	Aph				11	70	80	0	0	Dark gray aphanitic basalt
-			44	~				- i i	80	85	o	0	
-			44					11	85	90	ō	o	
-			EEI						90	95	0	0	
1 100		20.000	Bas						95	100	0	0	
-100	Horse H.	Thh3	Bas	Aph				11	100	105	0	0	Red hematitic staining: recognizable vesicles (possible flow contact)
-			550					i i	105	110	0	0	
[			44					11	110	115	0	0	
			44					1 1	115	120	0	0	
Ľ.	Horse H.	Thha	رب رب رب رب Basj	Aph					120	125	0	0	Dark gray aphanitic basalt
			555						125	130	0	0	
-						10							
-			33						135	140	0	0	
-			44						140 145	145 150	10 11	0	
-150	Horse H.	Thh2	K- K- K-Bás	Aph					145 150	150	11	0	basalt with abundant geothite and Fe-oxides
-			33						150	155	14	0	
2			44						160	160	0	0	
-	Horse H.	Thh2	Bas	Aph		1			165	170	o	0	dark gray aphanitic basalt
-		11012	Las						170	175	ō	o	
-0			222						175	180	0	0	
-			551					11	180	185	o	O	
2	Horse H.	Thh2	Basi	Aph				1 1 1	185	190	0	0	Gray basalt with variable geothite coatings
[			550						190	195	0	0	
-200			Bas						195 200	200 205	0	0	
200			55						205	203	ŏ	ŏ	

													Corral	Canyon Project		Corral Canyon Resources, LLC
	Hole Ic	I:CCV	N-1					Eas	sting:	529589	9.7			Azimuth:0	Drilling Company	Hackworth
	Depth	:500						Nort	hina:	447342	20.6			Dip: -90	Drill Type:	Rotary
D	ate Starteo									5337.9				9795 LLD (0124758	Geologist	BB, JM
								LIEVC	uon.	0001.0					Geologist.	BB, 3W
Jale C	Completed	. 5/18	5/17													
Depth :			Туре		Faults	Veins		x-Sul	fide			says	-		Description	
Ğ	Formation	Unit	Rock Type	Texture	rauits	Venis	FeO	x	Ру	From	То	Au-ppb	Ag-ppb		Description	
		_	44				1.5		<del>1 1</del>	205	210	0	0			
			000						i i	210	215	0	0			
			000					1	į į	215	220	0	0			
			200						1	220	225	0	0			
			0,0,0						11	225	230	0	0			
			550						1 1	230	235	0	0			
	Horse H.	Thh2	Bas	Aph					1 1	235	240	0	0	Gray basalt with variable geothite coatings		
			550						1 1	240 245	245	0	0			
250			550						1 1	245	250 255	0	0			
			550						11	250	255	0	0			
			550					3	11	260	265	o	0			
			550						i i	265	270	ŏ	0			
			2121						1 1	270	275	0	0			
			0,0,0						1 1	275	280	0	0			
			550						1 1	280	285	0	0			
			550						1 1	285	290	0	0			
			550						1 1	290 295 295	295 300	0	0			
300			550						11		300	0	0			
500			550						11	300	305	0	0			
	Horse H.	Thh1	Bas	Aph					11	305	310	0	0	strong hematitic coating		
			550						11	310	315	0	0			
			550						1 1	315	320	0	0			
			550						1 1	320 325	325 330	0	0			
			550					1	1 1	325	335	9	0			
			44						1 1	335	340	o o	0			
			44						1 1	340	345	6	o			
250	Horse H.	Thh1	Bas	Aph		٧			1 i	345	350	0	0	basalt with hematitic coatings with trace qtz and calcite	fragments (lacks Tlat at con	tact between Thh and Tmc: may be structure
350		100.5059	44						11	350	355	0	0	(instead)	a a a asa a	
	Horse H.	Thh1	Basi	Aph		V			i i	355	360	0	0	basalt with decreasing degree of hematitic coatings with Tmc	i trace qtz and calcite fragm	ents. Ibma/Tlat is cut out and Thh is directly on
			2121					1	11	360	365	0	0			
			44					3	; ;	365	370	0	0			
			44						1 1	370	375	0	0			
			44						1 1	375	380	0	0			
	Mule C.	_	22	Anh					1 1	380 385	385 390	0	0	Dark black basalt with trace calcite 405-410		
	wule C.	Tmc	Bas	Aph			11		1 1	385	390	0	0	Dark black basalt with trace calcite 405-410		
			44						1 i	390	400	0	0			
400			44						11	400	405	0	0			
			2:2:4				1 i i		i i	405	410	0	0			

												Corra	Corral Canyon Project	anyon Resources, LLC
	Hole lo	I:CC	W-1				E	asting:	52958	9.7			Azimuth:0 Drilling Company: Hackworth	
	Depth	:500	1				Ν	orthing:	44734	20.6			Dip: -90 Drill Type: Rotary	
Da	ate Starteo	1:5/9/	17				Ele	evation:	5337.9	1			Geologist: BB, JM	
Date C	Completed	: 5/18	8/17											
Depth :		Rock	Туре				FeOx-	Sulfide		As	says		Description	
D	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Ру	From	То	Au-ppb	Ag-ppb	Description	
	Mule C.	Tmc	Bas	Aph			12		410	415	0	0	Dark black basalt with trace calcite 405-410	
	Mule C.	Tmc	Bas	Aph	Fault				415 420	420 425	0	0	Fault Dark black basalt with abundant clay gouge	
10			44					11	425	430	0	0		
			54.54					11	430 435	435 440	0	0		
	Mule C.	Tmc	Bas	Aph					435	445	0	0	Dark black-green basalt	
-450			555					11	445	450 455	0	0 0		
			44						450 455	455	0	0		
	Mule C.	Tmc	Bas	Aph				11	460	465	0	0	Dark green black basalt with abundant mafic ash suggesting water deposited lava (hyaloclastite)	
			550						465 470	470 475	0	0		
			500					11	475	480	0	0		
	Mule C.	Tmc	Bas	Aph					480 485	485 490	0	0	Green black basait	
			Loas A A A A A A A A A A A A A A A A A A A					11	490	495	0	0		
-500			66						495	500	0	0		
								11						
								11						
								11						
-550														
								11						
1								11						
								11						
-600								- i i						

Appendix 5: CCW-2 Drill Log

Hole Id: CCW42         Easting:         531570.7         Azimuth:0         Dnilling Company:         Hackworth           Depth:480         Northing:         4473780.1         Dip: -90         Drill Type:         Rotary           Date Complexet:         552717         Elevation:         5154.1         Geologist:         BB, JM, SM           Date Complexet:         Formation         Image: State Complexet:         Formation	yon Resources, LLC
Date Started: 5/18/17       Elevation: 5154.1       Geologis: BB, JM, SM         Date Completed: 5/27/17       Took       Feodore       Took       Feodore       Response       Response       Response       Description         Image: Started: 5/18/17       Took       Took       Took       Took       Took       Started: 5/18/17       Description         Image: Started: 5/18/17       Took       Took       Feodore       Took       Took       Augept       Agept       Description         Image: Started: 5/18/17         Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17         Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17         Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17         Image: Starte Started: 5/18/17       Image: Started: 5/18/17       Image: Started: 5/18/17<	
Date Started: 5/18/17       Elevation: 5154.1       Geologis: BB, JM, SM         Date Completed: 5277/7       Took Type       Texture       Faults       Description	
Date Completed:         5/27/17           End         Rock         Type         Feature         Feature         Feature         Feature         Feature         Feature         Auspate         Auspat	
Entropy         Toket         Type         Texture         Faults         Veins         Feox.         Py         From         To         Au-ppb         Ag-ppb         Description	
B         Formation         Un         Rock PB         Totuk         Peox P         Prov F         Prov F         F         N         Au-ppb         Ag-ppb         Description           1         1         0         5         12         700         5         12         700         5         12         700         5         10         8         700         5         12         700         5         12         700         5         12         700         5         12         700         5         12         700         5         12         700         5         10         8         700         5         12         700         5         12         700         5         12         700         5         12         700         5         12         500         5         12         500         5         12         500         55         12         500         55         12         500         55         12         500         55         14         800         12         700         14         800         12         700         14         800         12         700         14         800         12         700         <	
-100 Alluvium T ₉₂ Get -100 -100 Alluvium T ₉₂ Get -100 -100 -100 Alluvium T ₉₂ Get -100 -100 -110 -110 0 -110 0 -110 0 -110 0 0 0 0 10 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110	
-100 Alluvium Typ2 Gef 100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	
-100         Aluvium         Tg2         Gen         1         1         1         6         10         8         700           -150         -10         15         20         15         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         600         65         700         75         800         11         700         75         80         11         700         75         80         11         700         75         80         11         700         75         80 <td></td>	
Alluvium Tg2 Gev 150 Alluvium Tg2 6v 151 6v 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 160 160 160 170 170 170	
-50         -100         Alluvium         Tg2         Gw         -100         1         20         25         15         600           -100         Alluvium         Tg2         Gw         -100         1         50         11         500           -100         Alluvium         Tg2         Gw         -100         116         100         105         116         600           -100         Alluvium         Tg2         Gw         -116         116         117         500         117         500           -100         Alluvium         Tg2         Gw         -116         117         50         11         700           -100         Alluvium         Tg2         Gw         -116         100         105         19         500           -110         Alluvium         Tg2         Gw         -116         100         105         100         11         500           -110         Tg2         Gw         -116         100         105         19         500         11         500           -110         115         120         130         135         100         600         600         600         111	
-50 -50 -50 -100 Alluvium T ₉ 2 -100 -110 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -155 -12 -500 -55 -12 -500 -55 -12 -500 -55 -12 -500 -55 -15 -500 -55 -16 -500 -55 -16 -500 -55 -16 -500 -55 -17 -500 -17 -75 -14 -900 -55 -10 -55 -10 -50 -55 -10 -55 -10 -55 -11 -700 -55 -11 -700 -55 -11 -700 -55 -11 -700 -55 -12 -700 -55 -14 -95 -100 -155 -10 -500 -55 -12 -500 -55 -16 -700 -55 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -100 -155 -10 -15 -16 -700 -55 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -95 -17 -75 -14 -15 -10 -15 -16 -00 -115 -16 -00 -122 -10 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -00 -15 -16 -16 -00 -15 -16 -16 -00 -15 -16 -16 -00 -15 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	
Alluvium T ₃₂ Get T ₁₃ Get T ₁₃ Get T ₁₃ Get T ₁₄ G	
Alluvium T ₁₉ 2 GeV -100 -110 -110 -110 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150 -150	
-50 -50 -50 -50 -50 -10 -10 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -110 -115 -120 -100 -115 -150 -150 -150 -155 -14 -100 -155 -14 -150 -155 -14 -100 -155 -14 -100 -155 -12 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -150 -155 -14 -155 -14 -155 -14 -155 -14 -150 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -14 -155 -15 -15 -15 -15 -15 -15 -1	
-50 	
Alluvium T ₃₂ -100 -100 -100 -100 -100 -100 -100 -10	
Alluvium Tg2 Gvi -100 -100 -110 -110 -110 -110 -110 -11	
-100         Alluvium         Tg2         Gv         1         66         70         16         700           -100         Alluvium         Tg2         Gv         1         70         75         14         800           -100         Alluvium         Tg2         Gv         1         70         75         14         800           -100         Alluvium         Tg2         Gv         1         700         95         12         700           -100         Alluvium         Tg2         Gv         95         100         11         500           -100         105         110         16         600         600         600         600           -110         115         120         125         100         600         600         600           -110         115         120         125         100         600         600         600           -110         115         120         125         100         600         600         600           -110         115         120         125         100         600         600         600         600         600         600         600	
Alluvium Tg2 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110 -110	
100       Alluvium       Tg2       Fg2       Gvir       1       75       80       11       700       700       700       700       75       80       12       700       700       75       80       12       700       75       80       11       500       700       75       80       12       700       75       80       11       500       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       75       700       700       75       700       700       75       700       700       700       700       700       700       700       700       700       700       700       700       700 <td></td>	
Alluvium Tg2 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100	
100       Alluvium       Tg2       Gy       1       85       90       12       700         100       Alluvium       Tg2       Gy       95       100       11       500       500       Gravels composed of predominately P2 chert and quartzite rocks intermixed with eroded Thh basalts after ~1         100       110       115       8       700       100       105       100       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       110       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111	
100       Alluvium       Tg2       Gvr       Gvr       100       11       500       100       105       9       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500 <td< td=""><td></td></td<>	
-100       Alluvium       Tg2       Gyr       100       105       9       500       Gravels composed of predominately P2 chert and quartzite rocks intermixed with eroded Thh basalts after ~1         105       110       105       110       16       600         110       115       120       100       0         120       125       100       600         125       130       15       500         135       140       10       0         140       145       11       500         150       155       150       154         150       155       110       0         150       155       110       0         135       140       10       0         140       145       11       500         150       155       156       0         150       155       140       0         150       155       160       0	
Alluvium Tg2 GV 100 100 9 500 Gravels composed of predominately P2 chert and quartzite rocks intermixed with eroded 1hh basaits after ~1 100 110 116 600 110 115 8 700 120 125 10 600 125 130 15 500 135 11 0 135 140 10 0 145 150 12 0 155 144 0 155 160 0 0	
110 115 8 700 115 120 10 0 120 125 10 600 120 135 11 0 130 135 11 0 135 140 10 0 145 11 500 145 150 12 0 155 14 0	IOMa.
115 120 10 0 120 125 10 600 125 130 15 500 135 11 0 135 140 10 0 140 145 11 500 145 150 12 0 155 160 0 0	
120 125 10 600 125 130 15 500 130 135 11 0 140 145 11 500 150 155 14 0 150 0 0	
125 130 15 500 130 135 11 0 135 140 10 0 140 145 11 500 145 150 12 0 155 14 0	
-150 -150 -150 -150 -150 -155 -150 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -160 -155 -155 -155 -155 -155 -155 -155 -15	
135 140 10 0 140 145 11 500 150 155 14 0 155 160 0 0	
-150 -150 -155 -155 -155 -155 -155 -155	
- 150 - 150 - 150 155 14 0 - 155 160 0 0	
150 155 14 0 155 160 0 0	
175 180 11 500	
-200 195 200 5 0 200 205 7 600 205 210 14 700	

												Corral	Canyon Project Corral Canyon Resources, LLC
	Hole Ic	I:CCI	N-2				E	asting:	531570	).7			Azimuth:0 Drilling Company: Hackworth
	Depth	.480					Nr	orthing:	447378	30.1			Dip: -90 Drill Type: Rotary
-								-					
	ate Starteo						Ele	evation:	5154.1				Geologist: BB, JM, SM
Date 0	Completed	5/27	7/17										
bth		Rock	Туре				FeOx-S	Sulfide		Ass	says		Barran D. Barran
Depth :	Formation	Unit	Rock Type	Texture	Faults	Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb	Description
							- 15	-1. -2.	205	210	14	700	
-			i ÖiÖ					- 1 - 1	200	215	7	700	
			юÖ					1 1	215	220	9	800	
									220	225	9	600	
-31								11	225	230	10	600	
							1 1	1 1	230	235	6	600	
	Alluvium	Tg2	Gvl					11	235	240	9	700	Gravels composed of predominately Pz chert and quartizite rocks intermixed with eroded Thh basalts after ~10Ma.
							11	- i i	240	245	10	800	
-250								- i i	245	250	9	800	
							- i i	- i i	250	255	7	900	
							11	11	255 260	260 265	9 11	1200 1100	
							11	- 1 - 1	260	265	25	900	
-			51515					1 1	270	275	45	1400	
			5-5-1				11		275	280	59	1000	
-			550				11	1 1	280	285	25	0	
			550				11	1 1	285	290		0	
			550					11	290 295 295	295 300	15 9 7 5	500 0	
-300			550				11	i i		300		ŏ	
. 300	Horse H.	The	SAN	Aph				- i i	300	305	0	500	Black basalt: mildlly magnetic
		11112	5 Jas					- i i	305	310	0	500	
			55.					11	310	315	0	0	
-			55					1 1	315	320	0	0	
			54					11	320 325	325	0	500 0	
			44					1 1	325	330 335	0	0	
								1 1	335	340	0	0	
			22					11	340	345	o	ō	
250	Waxee 17		Bas			N.		11	345	350	0	0	
-350	Horse H.	Thh2	Bas	Aph		V		11	350	355	0	0	Reddish brown basalt with lone piece of qtz-calcite in 345-350 tray
1			44					11	355	360	0	0	
	Horse H.	Thh1	Bas	Aph					360	365	7	600	Basalt
	1013011.	(nn'i	1 1	7.pri				1 1	365	370	0	0	
			55					1 1	370	375	0	0	
			44					1 1	375	380	7	0	
								1 1	380 385	385 390	0	0	
	Horse H.	Thh1	Bas	Aph		V		11	385 390	390	0	0	Predominately black basalt with minor oxidized basalt fragments: trace calcite 410-415
2			44					1	390	395 400	0	0	
-400			K-Bas					11	400	405	0	0	
2			44					1	405	410	0	0	

												Corra	I Canyon Project Corral Canyon Resources, LLC
	Hole lo	d:CC	W-2		Easting: 531570.7								Azimuth:0 Drilling Company: Hackworth
	Dept	n:480	)			Northing: 4473780.1							Dip: -90 Drill Type: Rotary
D	Date Started:5/18/17					Elevation: 5154.1							Geologist: BB, JM, SM
Date (	Completed	: 5/2	7/17										
oth	Rock Type					FeOx-Sulfide		Assays		says			
Depth :	Formation	Unit	Rock Type	Texture	Faults	s Veins	FeOx	Py	From	То	Au-ppb	Ag-ppb	Description
-450	Horse H. Horse H. Horse H.	Thh' Thh' Thh'		Aph		v	15		- 9 410 415 420 425 430 435 440 445 445 440 465 460 465 470	415 420 425 430 435 440 445 450 455 460 465 470 475 480	20         0           25         5           30         0           35         0           40         0           45         5           50         5           55         5           60         5           65         8           77         0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Predominately black basalt with minor oxidized basalt fragments: trace calcite 410-415 Black basalt with increasing Fe-oxides Black basalt with minor fragments of yellow tuff: possible gray chert (Lithic in LAT?). Might be approaching base of Thh and contact with Tlat-Tmc.
-500													
-600													